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Abstract

An analytical model to simulate wheel/rail interaction using the Green’s functions method is proposed in this paper. The

model consists of a moving wheel on a discretely supported rail. Particularly for this model of rail, the bending and the

longitudinal displacement are coupled due to the rail pad and a complex model of the rail pad is adopted. An efficient

method for solving a time-domain analysis for wheel/rail interaction is presented. The method is based on the properties of

the rail’s Green functions and starting to these functions, a track’s Green matrix is assembled for the numerical simulations

of wheel/rail response due to three kinds of vertical excitations: the steady-state interaction, the rail corrugation and the

wheel flat. The study points to influence of the worn rail—rigid contact—on variation in the wheel/rail contact force. The

concept of pinned–pinned inhibitive rail pad is also presented.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

When a wheel rolls along a rail, both are set in vertical vibration by the irregularities (roughness, waviness)
of the running surfaces, or by discontinuities of the rail and wheel such as turnouts, crossings, rail joints and
wheel flats. Even geometrically perfect surfaces may generate vibration due to varying dynamic stiffness of a
track within a sleeper bay. The study of vibration generated by a rolling wheel on a rail is critical in predicting
the short-pitch rail corrugation and wheel–rail noise.

The issue of the wheel–rail vibration system may be solved by frequency-domain analysis and time-domain
analysis. Frequency-domain analysis uses a mathematical transformation which aims to find harmonic
solutions for the complicated motion equations. Thus, the receptance or the impedance at different frequencies
is calculated. Remington [1] and Thompson [2] used the impedance and the receptance respectively, of a
Bernoulli–Euler beam on an elastic foundation. The receptance of an Euler beam on a layer of intermediate
masses and the receptance of a double Euler beam system on elastic support were calculated by Sato [3].
Grassie et al. [4] have systematically studied the rail’s dynamic response using both the Euler beam theory and
the Timoshenko beam theory (with shear deformation and rotational inertia). Frequency-domain analysis is
the starting point in rolling noise prediction, according to Remington [5] and Thompson [6].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Time-domain analysis for the wheel/rail response is based often on the track linear model. In many
analytical approaches, the track’s equations of motions are first decoupled by the modal analysis and then the
modal superposition technique is applied in order to calculate the track response. If the track is regarded as a
linear finite element model, the response is obtained by the modal analysis, as well. Clark et al. [7] have
developed a track dynamic and wheel/rail interaction model, considering a 20-sleeper long discretely
supported model. The dynamic behaviour of a track presenting rail corrugation has been studied. An
advanced track model based on the finite element method has been developed by Nielsen and Igeland [8] in
order to analyze the vertical dynamic behaviour, when a bogie moves on a track in presence of three different
types of practical imperfections: the corrugation of the rail head, the wheel flat and the case of a single sleeper
that has lost its support due to erosion of the ballast. Hou et al. [9] reported their calculated responses for an
asymmetrical vehicle/track model due to steady-state interaction and wheel flat.

The problem of the wheel/rail interaction may be solved by using two main types of models: a wheel rolling
on the track and a moving irregularity between a stationary wheel and rail. The first model is the most realistic
one, but it’s also the most difficult to apply.

The track is actually a periodic infinite structure. The modal analysis requires truncating the track model
after a finite number of spans. If the number of spans is large enough, the periodic structure of track may be
obtained only at the central section of the model. When the wheel passes beyond this particular section, errors
caused by the edge-approach effect occur. Thus, the length of the considered rail will be small, due to
the boundary conditions. A practical solution for this issue is the cutting and merging method, proposed by
Dong [10].

The model of a moving irregularity between a stationary wheel and rail is much easier to use especially for a
continuously supported rail, when the error introduced is negligible. When it comes to the case of a sleeper-
supported rail though, the whole system is subjected to parametric excitation due to the rail’s dynamic stiffness
variation. Wu and Thompson [11] have studied this issue and an equivalent time-varying model for the track
in accordance with the space-varying receptance was used. They simulated the wheel/rail interaction caused by
roughness excitation and the wheel flat/rail interaction using both the moving irregularity model and the
moving wheel model. At the end, they have compared the results.

The wheel/rail interaction issue is a part of the area of dynamics of periodic structures under moving loads.
Different aspects of the periodic structures under moving loads response have been studied by a number of
researchers employing different methods. Floquet theorem was applied by Krzyzynski and Popp [12,13] in
order to investigate the problem of vertical wave propagation in the track and its response under a moving
harmonic force. Degrande et al. [14] have studied the vibrations in the free field from excitation due to metro
trains in tunnels using the Floquet transform to reduce the discretization of the periodical structure of the
tunnel to a single-bounded reference cell. In other paper, Clouteau et al. [15] have presented the importance of
guided waves along the track using a substructure method based on Green’s functions for the soil taken as a
horizontally layered liner elastic half-space. Belotserkovskiy [16] has employed the so-called ‘periodicity
condition method’ in order to determine the displacement of an Euler Bernoulli beam rested on an elastically
periodic support under a moving harmonic force. Metrikine and Bosch [17] have evaluated the steady-state
response of a two-level catenary to a uniformly moving pantograph using the periodicity condition method, as
well. The steady-state vibration of a periodically supported beam on an elastic half-space under an uniformly
moving harmonically varying load has been studied by Metrikine and Popp [18] using the equivalent stiffness
of elastic half-space.

The present work deals with the issue of the wheel/rail interaction. The moving wheel on a discretely
supported rail model was used. The vertical and longitudinal dynamics of the rail coupled to the rail pads were
considered. At the rail pad, the rotation of the rail cross-sections is not free and the pinned–pinned resonance
peaks are suppressed. For the vertical dynamics, the rail is treated as a uniform infinite Timoshenko beam. For
longitudinal dynamics, the rail is taken as a uniform infinite bar. The sleepers are represented as rigid bodies
with three d.o.f.’s—two longitudinal and vertical displacements and one rotation. This kind of model—a
conventional Timoshenko beam model—may be used up to about 2000Hz, as Wu and Thompson [19]
showed.

The solution is based on applying the Green functions method. This method was also applied by Nordborg
[20] but in a different manner. The Green functions applied to the track for the harmonic behaviour and for
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time-domain analysis are determined. The two different types of Green functions are related through the
Fourier transform. A Green matrix for the track was determined by considering the properties of the Green
functions applied to the rail. This matrix solves the issue of simulating the wheel/rail interaction for any rail
length. Using this matrix for the track model combined with a simple wheel model, three different aspects of
the vertical wheel/rail vibration behaviour are investigated: the steady state of a wheel moving on the rail, the
corrugated rail and the wheel flat.

2. The wheel/rail interaction model

In many applications of wheel/rail interaction, in which the natural frequencies of the vehicle suspension
system are much lower than the ones of the wheel/rail vibration, it is good enough to model the vehicle simply
as static load acting on the wheel including un-sprung mass.

A diagram of the wheel/track model is shown in Fig. 1. The wheel is regarded as an Mw mass which moves
at a constant V speed along the rail. The vertical wheel displacement caused by the interaction with the rail is
zw(t), where t stands for time. The initial position of the wheel is a.

The track model in which a rail is discretely supported by rail pads, semi-sleepers and ballast is considered.
The rail is taken as a uniform infinite Timoshenko beam and as a bar with specific m mass per length unit. The
bar theory is applied for longitudinal displacements of the rail. The other parameters for the rail are the
Young’s modulus E, the shear modulus G, the density r, the cross-sectional area S, the area moment of inertia
I and the shear coefficient k. The distance from the rail foot to the cross-section’s neutral fibre is h. The loss
factor of the rail is neglected. The vertical beam bend motion—w(x, t) is the vertical displacement, y(x, t) is the
rotation of the cross-section—is coupled to the longitudinal motion—u(x, t) is the longitudinal displacement—
due to the rail pad.

The rail pad is modelled as a parallel connection of spring and dashpots having linear characteristics in x

and z dimensions, and a similar torsion spring and damper restraining rotation in vertical–longitudinal plane.
The elastic constants krx, krz and kra and the damping constants crx, crz and cra are related to the rail pad.

The ballast is represented by a system of parallel connections of springs and dashpots having viscose
damping in x and z dimensions. The stiffnesses kbx, kbz and the viscous damping constants cbx, cbz refer to
the ballast.
Fig. 1. Mechanical model of railway wheel on track: (1) rail; (2) rail-pad; (3) semi-sleeper; (4) ballast; (5) wheel; and (6) contact stiffness.
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The semi-sleeper is considered as rigid body with three d.o.f.’s: the vertical translation zi(t), the lateral
translation xi(t) (along the rail) and the rotation ai(t) (across the rail). A semi-sleeper has the mass Ms and
mass–moment of inertia Is. The place of the sleeper i is si. The distances between the sleeper and the two elastic
layers (modelling the rail pad and the ballast) are h1 and h2.

The equation describing the motion of the wheel is

Mw €zwðtÞ ¼ P0 � PðtÞ, (1)

where P0 stands for the static wheel load and P(t) the wheel/rail contact force.
The track’s differential equations of motion can be written in matrix form as

Lx;tfqg þ
X
i2Z

ðAtfqig þ Btfq
s
i gÞdðx� siÞ ¼ fpg, (2)

Ctfq
s
i g ¼ Dtfqig, (3)

where Lx,t, At, Bt, Ct and Dt stand for matrix differentials (see Appendix A), {q} ¼ {q(x, t)} ¼ [u(x, t) w(x, t)
y(x, t)]T is the column vector of rail displacements, {qi} ¼ {q(si, t)}, {qs

i} ¼ {qs
i(t)} ¼ [xi(t) zi(t) ai(t)]

T is the
column vector of the considered i sleeper’s displacements, {p} ¼ �P(t)d(x�a�Vt){e} is the column vector of
forces on the rail with {e} ¼ [0 1 0]T and d(.) is the Dirac’s delta function.

The wheel and the rail are solid elastic bodies and the deformation at the contact point can be expressed by
Hertz’s theory of elastic contact. According to this theory, the relationship between the contact force P(t) and
the Hertzian deflection:

zdðtÞ ¼ zwðtÞ � wðaþ Vt; tÞ � zrðaþ VtÞ

is

½PðtÞ=CH �
2=3 ¼ zdðtÞH½zdðtÞ�, (4)

where zr(a+Vt) is the vertical excitation’s displacement, due to roughness at the contact point, and CH

represents the Hertzian constant and H[.] is the Heaviside function.
The boundary conditions are:

lim
jx�Vtj!1

fqðx; tÞg ¼ ½ 0 0 0 �T; lim
i!�1

fqs
i ðtÞg ¼ ½ 0 0 0 �T (5)

and the initial conditions are:

zwð0Þ ¼ 0; _zwð0Þ ¼ 0; fqðx; 0Þg ¼ ½ 0 0 0 �T; _qðx; 0Þ
� �

¼ ½ 0 0 0 �T,

fqs
i ð0Þg ¼ ½ 0 0 0 �T; f_qs

i ð0Þg ¼ ½ 0 0 0 �T. ð6Þ

By the use of the track’s Green functions, the model’s equations may be solved and the wheel–track
interaction may be simulated.

3. The track’s Green functions

Generally speaking, the issue of track vibration may be solved using the Green functions method, for both
the frequency-domain and time-domain analysis. The objective of this section is to define and describe the
track’s Green functions.

3.1. Defining and calculating the track’s Green functions

The Green functions for frequency-domain analysis have complex values and depend on the angular
frequency marked here as o. These will be named as ‘the Green complex functions’. The Green functions for
time-domain analysis are time dependent and have real values—these will be named as ‘real Green functions’.
The complex Green functions are the Fourier transforms of the real Green functions.

The time-domain analysis of the track’s dynamic response for a vertical excitation may be studied using two
real types of Green functions. One of those is the column vector of rail’s real Green functions (including the
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rail’s response in the x section at the t�t moment, if at the t moment in the x section an impulse force
occurred):

fgðx; x; t� tÞg ¼ ½ guðx; x; t� tÞ gwðx; x; t� tÞ gyðx; x; t� tÞ �T. (7)

The other type of Green functions is the Green functions’ vector:

fgs
i ðx; t� tÞg ¼ ½ gixðx; t� tÞ gizðx; t� tÞ giaðx; t� tÞ �T, (8)

which contains the ‘i’ sleeper response at t�t moment, if at the t moment in section x an impulse force
occurred.

The Green’s functions are the solutions for Eqs. (2) and (3) if the right term of the first equation is

fpg ¼ dðx� xÞdðt� tÞfeg. (9)

The track’s complex Green functions are two different types: the column vector of rail’s complex Green
functions consisting in the rail’s response in the x section, caused by a unitary harmonic impulse force by an
angular o frequency, occurring in the x section:

fGðx; x;oÞg ¼ ½Guðx; x;oÞ Gwðx; x;oÞ Gyðx; x;oÞ �T ¼ F ½fgðx; x; tÞg� (10)

and the column vector of the sleeper’s complex Green functions consisting in the ‘i’ sleeper’s response, caused
by the same unitary harmonic impulse force:

fGs
i ðx;oÞg ¼ ½Gixðx;oÞ Gizðx;oÞ Giaðx;oÞ �T ¼ F ½fgs

i ðx; tÞg�, (11)

where F [.] is the Fourier transform. All complex Green functions are receptances.
Using the reverse Fourier transform and the complex track’s Green functions, the real Green functions for

the track may be calculated:

fgðx; x; t� tÞg ¼
1

2p

Z 1
�1

fGðx; x;oÞg exp½joðt� tÞ�do

¼
2

p

Z 1
0

RefGðx; x;oÞg cos½oðt� tÞ�do, ð12Þ

fgs
i ðx; t� tÞg ¼

1

2p

Z 1
�1

fGs
i ðx;oÞg exp½joðt� tÞ�do

¼
2

p

Z 1
0

RefGs
i ðx;oÞg cos½oðt� tÞ�do, ð13Þ

where j2 ¼ �1. Eqs. (12) and (13) are valid because all real Green functions are causal.
It’s obvious that the complex Green functions are in fact the solutions of the following equations:

Lx;ofGg þ
X
i2Z

ðAofGig þ BofG
s
i gÞdðx� siÞ ¼ dðx� xÞfeg, (14)

CofG
s
i g ¼ DofGig, (15)

where by simplicity purposes, the following were marked as {G} ¼ {G(x, x,o)}, {Gi} ¼ {G(si, x,o)},
{Gs

i} ¼ {Gs
i(x,o)} and Lx,o ¼ F[Lx,t], Ao ¼ F[At], etc.

By extracting {Gs
i} from Eq. (15) and substituting it in Eq. (14) the following results:

Lx;ofGg ¼ dðx� xÞfeg �
X
i2Z

KofGigdðx� siÞ, (16)

with Ko ¼ Ao þ BoC
�1
o DoU
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Eq. (16) is then multiplied by the matrix operator:

Jx ¼

1 0 0

0
EI

GSk
d2

dx2
þ

rIo2

GSk
� 1

d

dx

0 �
d

dx

d2

dx2
þ

o2m

GSk

2
666664

3
777775 (17)

and the Lx,o operator becomes diagonal. The solutions of Eq. (16) may be written as follows:

fGg ¼

Z 1
�1

C Jx0dðx0 � xÞfeg �
X
i2Z

Jx0dðx0 � siÞKofGig

" #
dx0, (18)

where C stands for the diagonal operator’s Green’s functions matrix:

L�x;o ¼ JxLx;o ¼ diagðH1x;H2x;H2xÞ ¼

H1x 0 0

0 H2x 0

0 0 H2x

2
64

3
75, (19)

with

H1x ¼ ES
d2

dx2
þmo2; H2x ¼ EI

d4

dx4
þ o2 m

EI

kSG
þ rI

� �
d2

dx2
þmo2 ro2I

kSG
� 1

� �
.

The C matrix of Green’s functions is the solution of the following equation:

L�x;oC ¼ dðx� x0ÞE, (20)

where E stands for the 3� 3 unity matrix.
The C matrix has the following shape:

C ¼ Cðx;x0;oÞ ¼ diagðGuðx; x0;oÞ;Gwðx;x0;oÞ;Gyðx; x0;oÞÞ, (21)

in which

Guðx;x0;oÞ ¼ j
expð�jbjx� x0jÞ

2bSE
,

is the Green’s functions of an infinite bar, and

Gwðx;x0;oÞ ¼ Gyðx;x0;oÞ ¼ �
b2 expð�b1jx� x0jÞ þ jb1 expð�jb2jx� x0jÞ

2b1b2ðb
2
1 þ b22ÞEI

are the Green’s functions of an infinite Timoshenko beam [21], where

b ¼

ffiffiffiffiffiffiffiffiffiffi
mo2

SE

r
; b1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o4

4E2

E

Gk
� 1

� �2

þ
mo2

EI

s
�

ro2

2E

E

Gk
þ 1

� �vuut
and o2pGSk/(rI).

Taking

C�ðx; x;oÞ ¼
Z 1
�1

Cðx;x0;oÞJx0dðx0 � xÞdx0,

respectively

C�ðx; x;oÞ ¼ diag Guðx; x;oÞ;
EI

GSk
Gw

x0x0 ðx; x;oÞ þ
rIo2

GSk
� 1

� ��

Gwðx; x;oÞ;Gy
x0x0 ðx; x;oÞ þ

o2m

GSk
Gyðx; x;oÞ

�
.
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Eq. (18) can be written as

fGg ¼ C�ðx; x;oÞfeg �
X
i2Z

C�ðx; si;oÞKofGig. (22)

The calculation for rail displacements near the ‘k’ sleeper is going to be done by the use of Eq. (22) in which
{G} will be replaced by {Gk}. Thus, the following will result:

fGðsk; x;oÞg ¼ fPkg �
X
i2Z

C�ðsk; si;oÞKofGðsi; x;oÞg, (23)

where fPkg ¼ C�ðsk; x;oÞfeg.
Finally, by considering a number of n sleepers (with n sufficiently as large), the following matrix equation

results:

C�1;1Ko þ E C�1;2Ko � � � C�1;nKo

C�2;1Ko C�2;2Ko þ E � � � C�2;nKo

� � � � � � � � � � � �

C�n;1Ko C�n;2Ko � � � C�n;nKo þ E

2
66664

3
77775
fG1g

fG2g

� � �

fGng

2
6664

3
7775 ¼

fP1g

fP2g

� � �

fPng

2
6664

3
7775, (24)

with C*
k,i ¼ C*(sk, si,o) and k, i ¼ 1Cn. The equation’s matrix depends on the sleeper positions and the

angular frequency.
The rail’s Green functions are particularly important because they are used to determine the wheel/rail

contact forces. The track is considered as an infinite periodic and damped mechanical structure. The rail’s
Green functions have three outstanding properties:
	
 They are symmetrical (the Maxwell–Betty principle):

Gwðx; x;oÞ ¼ Gwðx; x;oÞ; gwðx; x; t� tÞ ¼ gwðx;x; t� tÞ. (25)
	
 They are attenuated in space, time and frequency-domains:

lim
x!�1

fGðx; x;oÞg ¼ lim
x!�1

fGðx; x;oÞg ¼ lim
o!�1

fGðx; x;oÞg ¼ 0, (26a)

lim
x!�1

fgðx; x; t� tÞg ¼ lim
x!�1

fgðx; x; t� tÞg ¼ lim
t�t!þ1

fgðx; x; t� tÞg ¼ 0. (26b)
	
 They are periodical:

fGðx; x;oÞg ¼ fGðxþ kd; xþ kd;oÞg,

fgðx; x; t� tÞg ¼ fgðxþ kd ; xþ kd; t� tÞg, ð27Þ

where k is an integer.

The sleepers’ Green functions are attenuated in space, time and frequency-domains:

lim
i!�1

fGs
i ðx;oÞg ¼ lim

x!�1
fGs

i ðx;oÞg ¼ lim
o!�1

fGs
i ðx;oÞg ¼ 0, (28a)

lim
i!�1

fgs
i ðx; t� tÞg ¼ lim

x!�1
fgs

i ðx; t� tÞg ¼ lim
t�t!þ1

fgs
i ðx; t� tÞg ¼ 0 (28b)

and they are periodical:

fGs
i ðx;oÞg ¼ fG

s
iþkðxþ kd;oÞg; fgs

i ðx; t� tÞg ¼ fgs
iþkðxþ kd; t� tÞg. (29)

The rail’s vertical displacement at the contact point has an appropriate real gw(a+Vt, a+Vt, t�t) Green
function that has to be used when the wheel or the vertical force is moving at a certain V speed. This function
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results actually from the real gw(x, x, t�t) Green function and keeps its original properties. Basically, the
gw(a+Vt, a+Vt, t�t) function can generate a matrix and the wheel’s rolling on the rail may be simulated at any
moment and for any distance.

3.2. Numerical application and discussions

The complex and real rail’s Green functions are calculated for the particular case of a discretely supported
UIC 60 rail. The parameters for the rail are: E ¼ 210GPa, G ¼ 8.08GPa, k ¼ 0.4, r ¼ 7850 kg/m3, S ¼

7.69� 10�3m2 and I ¼ 30.55� 10�6m4.
The parameters for the discrete support are chosen as follows: Ms ¼ 160 kg, Is ¼ 1.586 kgm2, d ¼ 0.6m,

h ¼ 0.08m, h1 ¼ 0.116m, h2 ¼ 0.114m, krx ¼ 50MN/m, krz ¼ 350 MN/m, kra ¼ krzc
2/3 ¼ 746.7 kNm/rad

(2c ¼ 160mm, rail pad width), crx ¼ 10 kN s/m, crz ¼ 48 kN s/m, cra ¼ crzc
2/3 ¼ 102.4Nms/rad, kbx ¼ 39.6

MN/m, kbz ¼ 70MN/m, cbx ¼ 52 kN s/m, and cbz ¼ 47 kN s/m.
The present rail pad and ballast stiffness are chosen by considering data from two previous studies [22,23].

The damping is chosen to give a good fit to the test results [22]. The model of the rail’s structural damping is
studied in the works mentioned above. This model may be used though, only in the frequency-domain analysis
and not at all in the time-domain analysis. For this reason, the viscosity damper model is considered in the
present study.

For the numerical simulation, the track model length is 40 sleeper bays. The origin of the referential system
is placed at sleeper no. 21.

The complex Green function of the vertical displacement of the rail at the point of a unitary harmonic
excitation both for excitation acting at mid span and for excitation acting above a sleeper is shown in Fig. 2 in
the domain of 10Hz–5 kHz. The complex Green function for the sleeper under a vertical excitation from
above is also presented. The response of the rail at low frequencies is dominated by two peaks at about 95 and
550Hz because the rail and the sleepers are a vibration system with two elastic layers. An anti-resonance
frequency appears at approximately 260Hz. It is actually the vibration absorber effect due to the sleepers. At
frequencies below the anti-resonance frequency there are no significant differences between excitations above
the sleeper and at mid span. At higher frequencies though, the vertical rail displacement at mid span is higher.
Fig. 2. Complex Green functions of the track: _________, the rail at mid span; . . . . . , the rail above sleeper; and – – –, the sleeper.
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The first pinned–pinned resonance appears around 1075Hz. At this frequency, the vertical bending
wavelength equals twice the span. The anti-resonance frequency may be observed at about 1120Hz for above
sleeper excitation. It is the ‘elastic sleeper support’ effect.

The second pinned–pinned resonance frequency is around 2875Hz. At this frequency, the vertical bending
wavelength equals the span. The receptance is minimal for both excitations, at mid span and above the sleeper.
When the vertical bending wavelength equals 2/3 of a span, a third pinned–pinned frequency occurs. Its value
is around 4670Hz. The receptance its maximum when excitation is placed at mid span and its minimal when
excitation is placed right above the sleeper.

The sleeper’s receptance is smaller than the rail’s, especially when dealing with high frequencies. Around the
anti-resonance frequency of 260Hz, the sleeper behaves as a dynamic absorber for the rail and its receptance is
higher than the rail’s.

The vertical accelerances of the rail are shown in Fig. 3. By comparing these diagrams with those in
Ref. [22], which show the same trends for the experimental results, it can be seen that the present model might
be used successfully for vertical rail vibrations up to about 2000Hz. At higher frequencies though, the rail does
not behave like a beam anymore, its foot vibrating much more intense than its head. Anyway, the model might
be used in predicting the vibration of the rail’s head at frequencies up to 5 kHz.

The track foundation damping has very little effect on the response of the rail at pinned–pinned resonance
frequency. On the other hand, this is limited because the sleepers are not equidistant and the contact between
the rail and pads is distributed. However, in the theoretical models, the sleeper bay is assumed to be constant
and the rail pad is taken as discrete support. Thus, the predictable results are in discrepancy with the theoretic
ones. In order to correct the theoretical results, one can add extra damping to the rail [19].

In this particular work, although the sleepers are equidistant, the structural damping is neglected and the
rail is assumed as ideally point-supported, the rail’s response to the pinned–pinned resonance frequency
matches the experimental result. That’s because the rail’s cross-section limited rotation due to the rail pad is
considered.

The pinned–pinned resonance frequency value is little influenced because the rail pad presents an elastic
withstanding along the rail and to rotation, as shown in Fig. 4. The shape of pinned–pinned resonance peak is
not that sharp, because the rail pad has damping displacements along the rails and rotations. This particular
aspect is shown in Fig. 5.

As the track is a periodic structure, the appropriate complex Green function Gw(x, x,o), will be periodic as
well. For the numerical simulation, the track’s length is finite. Thus, the complex Green function is not
rigorously periodic. Fig. 6 presents the periodic relative error:

� ¼
Gwðxþ kd ; xþ kd;oÞ
�� ��� Gwðx; x;oÞ

�� ��
Gwðx; x;oÞ
�� �� ,

for a number of k ¼ 4 span lengths (x ¼ x ¼ 0.3) and for k ¼ 5 (x ¼ x ¼ 0). Some low percentage errors occur
around the pinned–pinned resonance frequencies.
Fig. 3. Rail accelerances: _________, at mid span; and . . . . . , above sleeper.
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Fig. 4. Rail receptance at pinned–pinned resonance for different rail pad stiffness: _________, krx ¼ 50 MN/m, kra ¼ 746.7 kNm/rad;
. . . . . , krx ¼ 25MN/m, kra ¼ 746.7 kNm/rad; – – –, krx ¼ 50MN/m, kra ¼ 373.3 kNm/rad.

Fig. 5. Rail receptance at pinned–pinned resonance for different rail pad damping: _________, crx ¼ 10kNs/m, cra ¼ 102.4Nms/rad; . . . . . ,

crx ¼ 5kNs/m, cra ¼ 102.4Nms/rad; – � – � –, crx ¼ 10kNs/m, cra ¼ 51.2Nms/rad; – – –, crx ¼ 20kNs/m, cra ¼ 204.8Nms/rad.

Tr. Mazilu / Journal of Sound and Vibration 306 (2007) 31–5840
The propagation of the bending waves along the track is damped and selective. Fig. 7 presents the
attenuation ratio as

A ¼
Gwðx;xþ kd;oÞ

Gwðx;x;oÞ

����
����,

at k ¼ 3, 5, 7 span lengths when excited at mid span. The bending wave for pinned–pinned resonance
frequencies has the best propagation. This aspect may be observed in Fig. 8, which presents the decay rates of
vertical vibration along the rail for the first three resonance frequencies (95, 550 and 1075Hz) and the force
acting at mid span. The decay rate is about 6.5 dB/m at 95Hz, 8.7 dB/m at 550Hz and 1.3 dB/m at 1075Hz.
This decay rate was calculated from the attenuation in vibration level over a 9 span length from the excitation
point divided by this distance. The predicted results match the experimental ones [22].

The complex Green functions are used to calculate the track’s real Green functions. Eqs. (12) and (13) are
numerically integrated using the help of the cubic spline functions. The integration domain was chosen
between 0 and 2872Hz, which was the second pinned–pinned resonance frequency. The receptance at this
frequency is very small, 0.036 nm/N. The integration step was chosen as 8Hz. This value is a compromise
between the calculus precision and its efficiency. Fig. 9 presents the rail’s real Green function for mid span-
applied impulse (x ¼ 0.3, x ¼ 0.3). The maximal value of this Green function is 6.52 mm/(N s). After
approximately 7ms, the Green function is dominated by two mixed oscillations. The first one has a frequency
of 95Hz and the other one’s frequency is 1075Hz. One can see that the Green function is damped. After
another 80ms, its amplitude decreases below 2 nm/(N s), which is less than 1/325 from its maximum value.
Practically, the Green function fades away completely after 80–100ms.
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Fig. 6. The rail receptance periodic error: (a) at mid span for k ¼ 4; and (b) above the sleeper for k ¼ 5.

Fig. 7. Attenuation ratio of the rail receptance: . . . . . , for 3 sleeper bays; _________, for 5 sleeper bays; and – – – for 7 sleeper bays.
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Fig. 10 presents the rail’s real Green function for sleeper applied impulse (x ¼ 0, x ¼ 0). In this particular
case, the rail is less sensitive, and the maximum value is 4.035 mm/(N s). The function is strongly damped and
literally dominated by a 95Hz component.

Fig. 11 shows the rail response at mid span when the impulse is applied 7 sleepers away (x ¼ 2.1, x ¼ �2.1).
Because of the distance between the points of impulse appliance and response calculus, the response is delayed
and its magnitude decreases. The maximum value for Green’s function is 0.456 mm/(N s). The response is also
damped and dominated by two different components of 95 and 1075Hz, respectively.
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Fig. 9. The rail’s real Green function at mid span (x ¼ 0,3, x ¼ 0,3).

Fig. 8. Receptance attenuation along the rail: . . . . . , for 95Hz; _________, for 550Hz; and – – –, for 1075Hz.
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Fig. 12 shows the rail’s response above the sleeper, when the force impulse is applied 7 span lengths away
(x ¼ 2.4, x ¼ �1.8). The response continues to be delayed and has a significantly smaller magnitude compared
to the initial situation, when the impulse is applied right in the calculus point. The maximum value of the
Green function is 0.298 mm/(N s).

And finally, the sleeper’s Green function when applying the impulse above the sleeper is shown in Fig. 13.
The sleeper’s response is strongly damped and dominated by the 95Hz component. The maximum value for
the Green function is 3.606 mm/(N s).
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Fig. 10. The rail’s real Green function above the sleeper (x ¼ 0, x ¼ 0).

Fig. 11. The rail response at mid span when the impulse force is applied 7 sleeper bays away.

Fig. 12. The rail response at sleeper when the impulse force is applied 7 sleeper bays away.
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4. The solution of the interaction problem

The main wheel/rail interaction problem is defined by Eqs. (1)–(4). It may be solved through numerical step-
by-step integration. For this particular purpose, the wheel’s motion equation will be written as

_zwðtÞ ¼ _zwð0Þ þ
1

Mw

Z t

0

½P0 � PðtÞ�dt; zwðtÞ ¼ zwð0Þ þ

Z t

0

_zwðtÞdt. (30)
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Fig. 13. The sleeper’s real Green function for impact force applied above.

Tr. Mazilu / Journal of Sound and Vibration 306 (2007) 31–5844
The rail displacement at the contact point may be determined using the Green function method:

wðaþ Vt; tÞ ¼ �

Z 1
�1

Z t

0

gwðaþ Vt; x; t� tÞPðtÞdðx� a� VtÞdtdx

¼ �

Z t

0

gwðaþ Vt; aþ Vt; t� tÞPðtÞdt. ð31Þ

In other words, any x ¼ a+Vt contact point will have its appropriate Green function, gw(a+Vt, a+Vt,
t�t) depending on tA[0, t] only. A Green function has the particular property of being damped. Thus,
as a result, there is a certain T for which the norm of Green function’s JgwJ is ‘concentrated’ in the [0,T]
interval:

kgwk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gw; gw

� 	q
¼

Z 1
0

g2
wðaþ Vt; aþ Vt; t� tÞdðt� tÞ


 �1=2

ffi

Z T

0

g2
wðaþ Vt; aþ Vt; t� tÞdðt� tÞ


 �1=2
, ð32Þ

where (., .) is the inner product.
The Green function’s contribution for t�t4T can be even neglected:

gwðaþ Vt; aþ Vt; t� tÞ ffi 0; for tXT . (33)

From the practical point of view, it’s quite enough to consider the gw(a+Vt, a+Vt, t�t) sequence of Green
function, where t�tA[0,T].

The Green function is also periodic:

gwðaþ V ðtþ kTdÞ; aþ V ðtþ kTdÞ; t� tÞ ¼ gwðaþ Vt; aþ Vt; t� tÞ, (34)

for t�tA[0,T], where Td ¼ d/V and k is an integer. As a result, all the equidistant points situated at a span
length, will share the same Green function.

When using the small time-steps method on short Dt time intervals in order to integrate the track’s motion
equations, there are a number of Ng ¼ Td/Dt necessary Green functions to be calculated in Nt ¼ T/Dt+1
points. All the Green functions are assembled in a rectangular Ng�Nt matrix. This matrix can be defined as
the track’s Green matrix.

It is interesting to notice that this matrix includes also the values necessary for the integration of the motion
equations for the 0otoT—the transitory period of numeric integration. Next, the whole track’s Green matrix
is used to integrate the track’s motion equations for any t4T. This particular period may be considered as the
‘stationary’ period of numeric integration.

For the numeric calculus, a certain t0, t1,y, tn (with t0 ¼ 0, tn ¼ t and Dt ¼ ti�ti�1 where i ¼ 1Cn)
time partition is considered. The equations for wheel and rail displacement may be written under the
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recurrent form:

_zwðtnÞ ¼ _zwðtn�1Þ þ
1

Mw

Z tn

tn�1

P0 � PðtÞ½ �dt, (35)

zwðtnÞ ¼ zwðtn�1Þ þ

Z tn

tn�1

_zwðtÞdt, (36)

wðaþ Vtn; tnÞ ¼ �
Xn

i¼1

Z ti

ti�1

gwðaþ Vtn; aþ Vt; tn � tÞPðtÞdt. (37)

The integrations will be calculated adopting the hypothesis that in the [ti�1, ti] time interval, the contact
force P(t) and the Green function will have a linear variation. As a result, the following will occur:

_zwðtnÞ ¼ _zwðtn�1Þ þ
Dt

Mw

P0 �
PðtnÞ þ Pðtn�1Þ

2


 �
, (38)

zwðtnÞ ¼ zwðtn�1Þ þ _zwðtn�1ÞDtþ
Dt2

2Mw

P0 �
PðtnÞ þ 2Pðtn�1Þ

3


 �
, (39)

wðaþ Vtn; tnÞ ¼ �Dt
Xn

j¼1

gwðtj�1ÞPðtjÞ þ gwðtjÞPðtj�1Þ

2
þ

gwðtjÞ � gwðtj�1Þ
� 

PðtjÞ � Pðtj�1Þ
� 

3

� �
, (40)

where gwðtjÞ ¼ gwðaþ Vtn; aþ Vtj ; tn � tjÞ.
It is obvious that the wheel displacement and the rail deflection at the contact point are strongly influenced

by the amplitude of the P(tn) contact force. By substituting Eqs. (39) and (40) into Eq. (4), a non-linear P(tn)
based equation results. Solving this equation in an iterative manner, the P(tn) contact force is determined at
each integration step. Then, the wheel displacement and the rail deflection are determined. After that, the
procedure repeats with the next step.

5. Numerical application

For the numeric simulation, the same parameters for the rail together with a wheel were considered
Mw ¼ 550 kg, including the axle’s un-sprung mass. The Hertzian constant CH ¼ 11.86� 1010N/m3/2 is
determined taking the curve radiuses of 0.3m and N for the rail, and 0.5 and 0.46m for the wheel. This
corresponds to a wheel having a 920mm diameter and an S 78 rolling profile (used at CFR) on UIC 60 rail.
The wheel static load is 100 kN.

5.1. The wheel/rail harmonic behaviour

Prior to presenting the numeric simulation results in the time-domain, it is useful to examine the harmonic
behaviour of the wheel/rail system assuming the moving roughness model. The Hertzian contact is assumed to
be linear having the kH stiffness of 1.028GN/m. The numerical simulations for the harmonic behaviour were
made considering two particular situations: wheel above a sleeper and wheel at mid span.

The wheel/rail system’s response is correlated with the receptances of the two bodies and contact elasticity
(Fig. 14). At low frequencies (below 60Hz), the wheel receptance is higher than the rail’s. At frequencies above
60Hz, the ratio reverses. In this frequency range, the contact elasticity is much smaller than the rail
receptance. Due to the dynamic absorber effect given by the sleepers, close to the rail’s anti-resonance
frequency, the wheel and rail receptances are matching with the contact elasticity. Finally, in the
pinned–pinned resonance/anti-resonance zone, the rail receptance is close to the contact elasticity.

Fig. 15 shows the rail and wheel displacements. The wheel/rail contact force is presented in Fig. 16, as well.
All sizes are compared to roughness. The wheel/rail system has two resonances, one at low frequencies
of about 60Hz, and the other at medium frequencies of about 240Hz. The wheel displacement is higher than
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Fig. 14. The receptances of wheel/rail: – – –, rail between sleepers; – � – � –, rail above sleeper; . . . . . , wheel; _________, elasticity of

contact.

Fig. 15. Wheel/rail harmonic response: _________, rail between sleepers; – – –, rail above sleeper; – � – � –, wheel between sleeper; and
. . . . . , wheel above sleeper.

Fig. 16. Wheel/rail harmonic contact force: _________, between sleeper; and . . . . . , above sleeper.
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the rail’s at frequencies below 60Hz because the rail receptance is smaller in this domain. At higher frequencies
though, the rail receptance is higher than the wheel’s and the rail compensates the displacement of the system,
caused by the roughness. The influence of the elastic Hertzian contact occurs in the pinned–pinned resonance/
anti-resonance domain. The rail vibrates as a practical cord fixed at the sleepers. The following correla-
tions occur in this frequency domain: the rail resonance determines the wheel anti-resonance and the rail
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Fig. 17. Wheel/worn rail contact force (rigid contact): _________, between sleeper; and . . . . . , above sleeper.

Fig. 18. The wheel/rail contact force for pinned–pinned inhibitive rail pad: _________, rigid contact between sleepers; . . . . . , rigid contact

above the sleeper; – – –, elastic contact between sleepers; and – � – � –, elastic contact above the sleeper.
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anti-resonance leads to a local wheel resonance. Generally speaking, there are differences between the system’s
response above a sleeper and at mid span. These differences are maximal at the pinned–pinned resonance/
anti-resonance, as shown in the contact force diagram.

The contact elasticity plays an important role in wheel/rail interaction at the pinned–pinned frequency. If
the rail’s profile is new, the contact elasticity is maximal and it partially compensates the pinned–pinned effect.
In time though, the rail profile wears out and the contact elasticity decreases. The wheel/rail contact becomes
rigid and cannot compensate the variations of rail elasticity between two sleepers anymore. As a result, a large
variation of contact force along the span appears, as shown in Fig. 17. The contact stiffness kH was considered
as 1.837 GN/m. This aspect is significantly important in the occurrence and the development of the rail
corrugation.

The rail pad is a strong damper for the rail foot’s longitudinal displacement and rotation. If so, the rail
bending wave is delayed and the pinned–pinned resonance is strongly damped. This compensates the ‘loss of
contact elasticity’ effect. The contact force has a sensitively smaller variation between the two sleepers. Fig. 18
presents the wheel/rail contact force for a strong damping rail pad (crx ¼ 150 kN s/m, cra ¼ 1.536 kNms). This
will be referred later as the pinned– pinned inhibitive rail pad. The presented diagram covers both, elastic and
rigid wheel/rail contact. It is easy to observe that the pinned– pinned inhibitive rail pad’s influence is smaller
when we deal with an elastic contact. Its efficiency becomes obvious when we deal with a rigid contact.

5.2. Time-domain analysis

The previously presented track’s Green matrix and wheel/rail interaction model were used for simulation
purposes in the time-domain.
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The track’s Green matrix was determined for speed values of 24, 36, 48 and 60m/s. The transitory T period
for the numeric integration has been chosen according to the previous results as T ¼ 0.1 s respectively, except
for V ¼ 60m/s, for which T ¼ 0.08 s.

The real part of the complex Green function was calculated for the resulting track length (VT) at a higher
step (0.02m), and then interpolated with spline functions at a 0.6mm step. The time step for integrating the
equations of motion varies between 10 and 25 ms. This domain is adequate for capturing the high-frequency
dynamic responses of the wheel/rail system.

The temporal Green functions were calculated in a separate manner for each discrete point between the first
and the second sleeper. The track’s Green matrix was determined through temporal Green functions’
assembly.

This wheel/rail model is used to simulate three dynamic cases: the steady-state interaction, wheel/rail rough
interaction and wheel flat/rail interaction. In all these cases, at the initial moment, the wheel finds itself right
above a sleeper, in a geometric contact (the contact force is null).

5.2.1. Steady-state interaction

It is assumed that the wheel and the rail are perfectly smooth and they have no defects. It is the situation in
which the wheel/rail interaction is caused only by the parametric excitation of the track due to the varying
dynamic stiffness of the discretely supported track. In other words, it is the ideal case of wheel/rail interaction,
the so-called ‘steady-state interaction’ when the dynamic force is minimal.

Fig. 19 shows simulation results of the wheel/rail interaction—the steady-state interaction—when the wheel
rolls on the track at a speed of 24m/s. At the beginning, the wheel/rail system is in a transitory behaviour.
During the transitory behaviour, the wheel and the rail are vibrating together at the system’s first own
frequency, which is about 60Hz. After a period of approximately 0.15–0.20 s, the transitory behaviour fades
away and the steady-state interaction begins. The transitory behaviour appears to be longer than the one of
the numeric integration. In this particular case, it is about 0.1 s as mentioned above.

Fig. 20 presents the wheel/rail displacements at the contact point for the steady-state behaviour alongside
the sleepers 25–30, for all simulated speeds. The wheel and rail displacements resemble. The wheel
displacement is higher due to the elastic Hertzian contact. The minimal displacement of the wheel/rail system
occurs above the sleepers at the speed of 24m/s. At higher speeds, the minimal value occurs after the wheel
has passed over the sleeper. Fig. 21 shows the wheel/rail contact force under the same conditions. The contact
force is minimal above the sleeper. The effective contact force increases from 0.765 kN at 24m/s to 3.24 kN
at 36m/s. At this speed, the frequency of passing over the sleepers equals the wheel/rail system’s own
frequency, and the effective contact force is maximal. At higher speeds, the effective force increases to
1.844 kN at 48m/s and 1.91 kN at 60m/s. The highest variations of the contact force occur close to the
sleepers. This is caused by the variation of the dynamic stiffness of the rail due to the rail pad. This explains
why the rail corrugation occurs firstly close to the sleepers. All the values involved are periodic because of the
sleeper distancing effect.
Fig. 19. Displacement of wheel and rail at the contact point in steady-state interaction, wheel speed V ¼ 24m/s: _________, wheel

displacement; . . . . . , rail displacement.
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Fig. 20. Displacement of wheel and rail at the contact point in the steady-state interaction, at different speeds: (a) at 24m/s; (b) at 36m/s;

(c) at 48m/s; and (d) at 60m/s; _________, wheel displacement; . . . . . , rail displacement; and &, sleeper position

Fig. 21. Wheel/rail dynamic force in steady-state interaction at different speeds: (a) at 24m/s; (b) at 36m/s; (c) at 48m/s; and (d) at 60m/s;

&, sleeper position.
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Fig. 22 presents the contact force spectrum at the considered speeds for both, elastic and rigid wheel/rail
contact. When dealing with a rigid contact, the Hertzian constant is considered as CH ¼ 28.35� 1010N/m3/2.
The spectra were calculated on a single period. First spectral component’s frequency equals the ratio between
the speed and the span length. The frequencies of the other spectral components are multiples of the
fundamental frequency. The magnitude of the spectral components reaches its peak around 240Hz, due to the
second resonance of the wheel/rail system. A relative increase of the spectral components may be observed at
the speeds of 24 and 36m/s, especially around the pinned–pinned resonance frequency. The spectral
components are higher in the pinned–pinned resonance frequency zone, when wedeal with a rigid contact. This
is clear evidence of the contact stiffness’ influence upon the wheel/rail interaction. The spectral components of
the steady-state interaction influence the response spectrum when roughness is sinusoidal or random.
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Fig. 22. Contact force spectra at different speeds: (a) at 24m/s; (b) at 36m/s; (c) at 48m/s; and (d) at 60m/s; K, rigid contact; � , elastic

contact.
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5.2.2. The corrugated rail

Rail corrugation is a specific rail defect consisting in the occurrence of certain waves on the rolling surface of
the rail. The defect has many shapes but the rail corrugation of short wavelength, typically of 30–100mm is
the most dangerous one. Next, the case of a perfect round wheel which traverses a rail with a sinusoidal
corrugation is presented. When rolling on a sinusoidal corrugated rail, the steady-state interaction is
overlapped by the wheel/rail system’s vibrations induced by the roughness. These last vibrations have a
frequency equal to the ratio between the wheel’s speed and the roughness’ wavelength. The result is an
amplitude-modulated vibration, in which the carrier frequency is caused by the sinusoidal roughness
excitation and the modulation is given by the steady-state interaction.

Fig. 23 shows the result of the numeric simulation for a wheel moving at 60m/s over a sinusoidal roughness
which has a wavelength of 80mm and the amplitude of 25 mm. The appropriate frequency for this roughness is
fp ¼ 750Hz and this is the carrier’s frequency as well. The period of the periodic movement is 20ms, which is
the time for passing over two span lengths. The wheel amplitude is much smaller compared to the rail’s
amplitude at the considered contact point (Fig. 23a). This aspect is according with the results of the wheel/rail
harmonic behaviour analysis. The sleeper displacement is smaller than the rail’s, as the rail pad’s ‘filter’ effect
is obvious (Fig. 23b).

The character of modulated vibration is best illustrated by the time dependence of the wheel/rail contact
force. The spectrum of the contact force has two kinds of components: the steady-state interaction
components and the modulation effect-added components. The modulation effect refers to the fact that the
carrier frequency modulates the steady-state interaction components. The fundamental component of the
steady-state interaction has a f0 ¼ 100Hz frequency. The other harmonics have frequencies equal to integer
multiples of the fundamental frequency. The resulted modulated spectral components have frequencies equal
to fp7kf0 where k stands for an integer number.

If the carrier’s frequency is an integer multiple of the previously defined fundamental frequency, both kinds
of components will overlap. Fig. 24 shows the results for a simulation that considers a wheel rolling at 60m/s
over a sinusoidal roughness which has wavelengths of 50 and 60mm and amplitudes of 8 and 12 mm,
respectively. In this particular case, there are two different carriers by the frequencies of 1200 and 1000Hz.
The period of this periodic movement equals the time for passing from a sleeper to another, which is about
10ms. The amplitude of wheel displacement is smaller than the rail’s at the considered contact point. The
wheel/rail contact force varies between 58.36 and 139.30 kN. The effective force has a value of 15.77 kN. The
spectrum has two peaks corresponding to the carrier frequencies. The spectra of the two dynamic contact
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Fig. 23. The wheel/track response due to harmonic excitation by the wavelength of 80mm, wheel speed V ¼ 60m/s: (a) . . . . . , wheel

displacement, _________, rail displacement at contact point; &, sleeper position; (b) –––, rail displacement above sleeper # 32 at 18.6m,

– – –, the displacement of the sleeper # 32; (c) contact force; and (d) contact force spectrum, � , steady-state interaction components,

K, modulated components.

Fig. 24. The results for a simulation that considers a wheel rolling at 60m/s over a sinusoidal roughness which has wavelengths of 50 and

60mm and amplitudes of 8 and 12mm: (a) . . . . . , wheel displacement _________, rail displacement at contact point; (b) contact force; and

(c) contact force spectrum: K, for both wavelength; +, for wavelength of 60mm only; � , for wavelength of 50mm only.
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Fig. 25. Wheel/worn rail response due to two harmonic excitation with wavelength of 50 and 60mm, wheel speed V ¼ 60m/s: (a) . . . . . ,

wheel displacement, _________, rail displacement at contact point; (b) contact force; and (c) contact force spectrum.
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forces corresponding to the roughness are presented as well. It is easy to notice the overlapping effect
especially on the 1100Hz component.

When dealing with a rigid contact, the appropriate results are shown in Fig. 25. The vibratory behaviour is
much more intense. The wheel/rail contact force varies between 44.78 and 152.04 kN and has the effective
value of 20.52 kN. The components of the force spectrum are obviously higher than the ones of the elastic
contact. Those at frequencies above 800Hz are at least 25% higher.

Fig. 26 shows the simulation results for the pinned– pinned inhibitive rail pad (crx ¼ 150 kN s/m,
cra ¼ 1.536 kNms), under the same conditions. The contact force varies between 64.51 and 133.48 kN for
elastic contact, having its effective value of 13.74 kN. If a wheel is rolled on a corrugated rail (rigid contact),
the contact force varies from 54.59 to 143.59 kN and has an effective value of 16.69 kN. The comparative
spectral analysis of the wheel/rail contact force shows that the high-damping rail pad is efficient at frequencies
above 700Hz.
5.2.3. The wheel flat/rail interaction

The flat is a serious damage of the rolling surface of the railway wheel. This defect occurs when the wheel is
blocked due to a braking system malfunction. When a wheel having a flat defect rolls on the rail, a periodic
impact force occurs at the contact point, producing impact noise.

The issue of simulating this kind of impact may be solved using the presented model. A new flat has a cord
shape located on the circumference of the wheel’s longitudinal section. Anyway, after a very short period of
time, the edges of a flat profile become rounded due to the wear.

The wheel flat/rail interaction may be studied considering a perfectly round wheel rolling on a rail which
presents an indentation on its head. For this particular purpose, an indentation situated on the rail head is
considered. It has the following equation [24]:

zr ¼
e

2
1� cos 2p

x

l

� �
,

where e stands for the thickness of the flat and l stands for its length.
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Fig. 26. Wheel/rail supported on pinned–pinned inhibitive rail pad interaction force due to two harmonic excitation with wavelength of 50

and 60mm, wheel speed V ¼ 60m/s: (a) elastic contact; (b) rigid contact; (c) contact force spectrum: +, elastic contact, K, rigid contact.

Fig. 27. Wheel/rail response due to a 0.35mm deep and 60mm length wheel flat between sleeper at wheel speed 24m/s: (a) impact force;

(b) – � – � –, wheel displacement; _________, rail displacement at contact point; and . . . . . , rail head indentation.
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Fig. 27 shows the results of the simulated wheel flat/rail interaction at 24m/s at mid span. The length of the
flat is 60mm and its maximal depth is 0.35mm. When the wheel rolls over the indentation on the rail head, it
cannot immediately follow the indentation due to their inertia. The relative distance between the wheel and
rail head increases and the contact force is partially unloaded. This trend is maintained until the wheel reaches
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Fig. 28. Wheel/rail response due to a 0.35mm deep and 60mm length wheel flat above the sleeper at wheel speed 24m/s: (a) impact force;

(b) – � – � –, wheel displacement; _________, rail displacement at contact point; and . . . . . , rail head indentation.
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approximately above the maximum of the flat equivalent excitation. During this time, the rail is pushed
upwards by the ballast’s and rail pad’s reaction and the wheel is pushed downwards by the steady force which
becomes higher than the contact force. As a consequence of these opposing movements, the wheel/rail impact
occurs. The contact force reaches a spectacular value of 196.5 kN when the wheel passes the rail head
indentation. Shortly after the impact, the motion is quickly damped. If the flat zone is right above a sleeper,
the impact is just a little more violent, as Fig. 28 shows. The maximal impact force is 211 kN.

The higher the speed, the more violent the impact force. Fig. 29 shows the result of the numeric simulation
for the same flat zone, impacting at mid span at 60m/s. This time, the contact is lost for about 0.41ms. The
impact force has a tremendous magnitude of 320 kN.

If the flat zone is longer, the wheel might lose contact even twice. For e.g., Fig. 30 shows the wheel/rail
interaction for a wheel having a flat zone of 120 and 1.5mm indentation. The speed is 24m/s and an elastic
contact is considered. The system’s evolution resembles, except that now the wheel loses contact twice. First,
the wheel loses contact for 2.1ms, then passes the rail head indentation and loses contact again for 1.6ms. The
first impact lasts for 2.775ms and has a magnitude of 401.9 kN and the second has a much smaller magnitude
of 215.2 kN.

The rail pad damping leads to a reduction of rail receptance for pinned–pinned frequencies-the rail becomes
more rigid. Despite this, the influence on the impact is very poor, even for rigid contact. Fig. 31 presents the
impact force above a sleeper, for worn rail with regular rail pad and pinned– pinned inhibitive rail pad. There
are very little differences. The magnitude of the impact force slightly increases from 221.3 kN (regular rail pad)
to 222.5 kN (pinned– pinned inhibitive rail pad).

6. Conclusions

The wheel/rail interaction and the response to various vertical excitations were studied using a mixed
‘Timoshenko beam/infinite bar on a discrete pad’ model. A complex model for the rail pad was proposed: two
translations and one rotation—in order to simulate the conditions for stopping the bending wave’s
propagation. The issue of time-domain analysis for wheel/rail interaction was solved using the real Green
functions method. These were calculated by integrating the complex Green functions. The track’s Green
matrix was determined using the properties of the Green functions. The Green matrix was helpful to simulate
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Fig. 29. Wheel/rail response due to a 0.35mm deep and 60mm length wheel flat above the sleeper at wheel speed 60m/s: (a ) impact force;

(b) – � – � –, wheel displacement; _________, rail displacement at contact point; and . . . . . , rail head indentation.

Fig. 30. Wheel/rail response due to a 1.5mm deep and 120mm length wheel flat above the sleeper at wheel speed 24m/s: (a) impact force;

(b) – � – � –, wheel displacement; _________, rail displacement at contact point; and . . . . . , rail head indentation.
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the wheel/rail interaction for any distance and for any type of vertical excitation. For this, a mass wheel model
was combined with the track model.

The steady-state interaction is influenced mainly by the running speed and by the wheel/rail system’s own
low frequency. The wheel/rail contact force has a peak corresponding to the speed for which the frequency of
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Fig. 31. Comparison of the wheel flat/rail on regular rail pad interaction with the wheel flat/rail on pinned–pinned inhibitive rail pad

interaction due to a 0.35mm deep and 60mm length wheel flat above the sleeper at wheel speed 24m/s: _________, pinned–pinned inhibitive

rail pad; and . . . . . , regular rail pad.
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passing over the sleepers equals the first resonance frequency of the wheel/rail system. At higher speeds, the
contact force increases respectively. The contact force spectrum contains many harmonics because of the
variation of rail’s receptance between the two sleepers. The fundamental frequency of the force spectrum
equals the frequency of passing over sleepers. The spectral components are higher at the resonance frequencies
of the wheel/rail system.

As the rail head wear progresses, the wheel/rail contact becomes more rigid. The variation of the contact
force increases in the steady-state interaction.

If the wheel rolls on a corrugated rail, the wheel/rail contact force becomes amplitude modulated, and the
carrier’s frequency equals the frequency of passing over corrugation. The spectral components may be
overlapped especially in the pinned–pinned frequency domain.

The contact force has wide variation if the contact is rigid. This aspect leads to corrugation development.
Numeric simulations revealed that the use of a damping improved rail pad (pinned–pinned inhibitive rail pad)
reduces the amplitude of the contact force.

The wheel flat/rail interaction is dominated by the impact force due to the shock which occurs when the
wheel passes over the flat zone and it is pushed downwards by the dead load and the rail is pushed upwards by
the track’s reaction. In addition to that, the impact force is slightly stronger above the sleeper than in the
middle of the sleeper bay. The magnitude of the impact force depends on the flat size and on the running
speed. The contact stiffness and the pinned–pinned inhibitive rail pad have a very marginal influence.

Appendix A

The differential matrix operators from the Eqs. (1) and (2) are:
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with
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